微观世界中,电子具有“自旋”的基本属性,这些“自旋”如同一个个微小磁针。材料的较多宏观特性,如磁铁的磁性或超导体的零电阻,皆源于这些微观磁针的排列方式与相互作用。
日前,中国科学技术大学与浙江大学合作,在纳米尺度量子精密测量领域取得进展,首次实现了噪声环境下纠缠增强的纳米尺度单自旋探测。
探测单个自旋,测量物质世界最基础的磁性单元,能够为剖析物性提供新视角,并为发展单分子磁探测技术和推进量子科技奠定基础。但是,物质存在大量自旋,对单个自旋的探测犹如在喧闹的体育场中试图清晰捕捉某个人的低语,这对探测技术提出了严峻挑战。
金刚石氮—空位色心量子传感器,凭借纳米级分辨能力和高灵敏磁探测能力,被视为实现单自旋探测的关键技术途径。研究团队面向单自旋探测科学目标,通过长期积累,发展出高精度的自旋量子调控技术并构建出金刚石量子传感核心器件与装备,同时通过频谱差异识别出带有特殊“标记”的单自旋信号。
但是,在复杂的背景噪声中,如何稳定捕捉任意单个自旋的微弱信号,仍是当前的研究瓶颈,对传感器探测灵敏度与空间分辨率提出了更高要求。
在理论层面,量子纠缠是突破前述难题的可能途径——可将探测精度逼近量子力学所允许的极限。尽管已有一些初步的原理验证工作,但如何在固态传感体系中实现有效“纠缠增强”,在体系制备和操控方面面临巨大的技术挑战。
研究团队十多年来致力于自主制备高品质金刚石量子传感器,通过持续攻关,成功打通涵盖二十多道环节的完整工艺流程,掌握了高纯金刚石单晶生长、纳米级掺杂加工、确定性色心制备、高精度微纳装配等核心工艺。
通过材料制备与量子操控两条路径的协同创新,团队首次开发出纠缠增强型纳米单自旋探测技术,在固态体系中同步提升了微观磁信号灵敏度与空间分辨率,为纳米尺度量子精密测量技术的发展开辟了道路。
在材料制备方面,团队利用自主研发的超纯金刚石生长与纳米精度定点掺杂技术,制备出间距小至5纳米的氮—空位色心对结构。这种精确的空间控制是实现后续量子纠缠增强探测的关键基础。
在探测方法方面,团队将一对色心制备成特殊的量子纠缠态。这种状态可使它们“过滤”远端的相同背景噪声,同时协同“聚焦”并放大近端目标单自旋的独特信号。这一巧妙的策略解决了“信号放大”与“噪声干扰”之间的矛盾,并将空间分辨率提升1.6倍。
这一研究实现了三个突破——成功区分并探测到相邻的两个"暗"电子自旋,在嘈杂环境中将探测灵敏度提升至单传感器水平的3.4倍,可实时监测并主动调控不稳定自旋的信号。
该成果实验验证了量子纠缠在纳米尺度传感中的优势与潜力,标志着金刚石量子传感器具备作为纳米磁强计的潜力,为原子层面研究量子材料打开新窗口,将为凝聚态物理、量子生物学和化学等领域提供新的研究工具。
同时,相关金刚石氮空位色心的可控制备与量子纠缠调控技术,为面向实现室温金刚石量子计算奠定了关键基础。
11月27日,相关研究成果在线发表在《自然》(Nature)上。
供稿人:杨越
审核人:文成锋