您当前所在位置: 河南省科学技术协会 综合信息 科技瞭望

研究实现木质素生物质转化与可持续粘合剂生产

来源: 生物物理研究所 时间: 2026-01-13

  将木质素转化为高附加值化学品或材料,对生物质高值化利用及可持续发展具有重要意义。纳米酶作为具有类酶催化活性的纳米材料,兼具天然酶的高效性和纳米材料的稳定性,为绿色降解木质素提供了新途径。然而,纳米酶如何实现对天然酶功能的高效模拟,并克服催化活性与选择性之间的权衡难题,以及如何将木质素降解产物高效转化为高性能、无甲醛的绿色粘合剂,一直是相关领域的研究难点。

  近期,中国科学院生物物理研究所等研究团队,受天然漆酶多铜活性中心启发,提出了“自旋工程”策略,即通过精准调控二维金属有机框架(MOF)纳米酶中铜的自旋态,打破了活性与选择性的制约关系,实现了木质素的高效定向降解。基于该策略,研究团队进一步开发出高性能、环保的木质素基环氧粘合剂。

  研究团队首先制备了二维铜基MOF(COHB),并利用氧化还原处理和配体交换策略,构建了一系列具有不同铜自旋态的纳米酶衍生物。同时,研究通过结合密度泛函理论计算与电子顺磁共振等实验表征揭示,铜自旋磁矩与漆酶样活性之间呈现明显的“火山型”构效关系。优化后的最佳纳米酶(COHBLO)成功模拟了天然漆酶的多自旋协同催化机制,其最大反应速率是天然漆酶的70倍,比活力提升了5.14倍。

  研究团队进一步开发出从木质素降解到粘合剂制备的一体化路径,即利用COHBLO降解产生的富含活性酚羟基的木质素片段作为原料,与环氧源(甘油三缩水甘油醚)发生亲核开环加成反应,制备出具有致密交联网络结构的木质素基环氧粘合剂(CTLA)。实验结果表明,该粘合剂在木材粘接中表现出优异的机械性能,其剪切强度明显优于商业化酚醛树脂和环氧树脂,且无甲醛释放。同时,CTLA表现出较好的耐水、耐溶剂、耐极端温度及阻燃性能。

  该研究验证了通过“自旋工程”调控纳米酶活性的可行性,为高效纳米酶的理性设计提供了新视角,并为高值化利用木质素和开发绿色、高性能木材粘合剂提供了具有重要转化潜力的技术路线。

  相关研究成果发表在《先进材料》(Advanced Materials)上。研究工作得到中国科学院的支持。

  论文链接

供稿人:杨越

审核人:文成锋